HURRICANE RESILIENT WOODEN HOUSES
safer building and retrofitting guidelines
HURRICANE RESILIENT
WOODEN HOUSES
safer building and retrofitting guidelines

Author of text and drawings
Arch. Celia Izquierdo Pérez
celia.izquierdo.perez@gmail.com

Technical Advice
Arch. Javier Cidón Martínez

Language Advice
Salina Solomon
Mariah Travis

Coordination and Editing
Arch. Javier Cidón Martínez
Dr. Paulette Griffiths

Supporting Organization
Habitat for Humanity International
Regional area office for Latin America and the Caribbean
ICHaB. Unesco Chair on Basic Habitability.

These guidelines were produced for the urban disaster risk reduction project
BRACED (Building Resilience and Capacities for Emerging Disasters) which
was implemented by Habitat for Humanity in Portmore, Jamaica from 2014 to
2017. It was funded by USAID-OFDA (Office of United States Foreign Disaster
Assistance).

Copies of all or part of this manual may be made for noncommercial use, pro-
viding the source. Habitat for Humanity would appreciate all requests being di-
rected to lac@habitat.org.

Cover pictures taken in Newlands and Naggo Head, Portmore, Jamaica

INDEX

Introduction ... 6
Wind impacts on housing ... 7
Safe location ... 8
Heavy foundations ... 10
Braced walls ... 12
Strong roofing ... 16
Tie bottom-up .. 22
Investment priorities ... 24
What to do just before the storm 26
INTRODUCTION

These guidelines are easy to understand and are aimed to explain in a simple way key solutions to prevent wooden houses from being damaged in the event of a hurricane. The target audience is both building professionals and community members interested in safer building.

This publication explains through sketches the main vulnerabilities of light buildings facing strong winds and rains, and proposes some low cost technical improvements to make houses more resistant and safer. The recommendations given here are useful for both the construction of new housing and the reinforcement of existing ones.

The concept of resilience is about adaptation, and it goes beyond building resistant homes. Resilience is also about how to quickly recover from damage. The final pages of this manual propose some tips about what to do just before the storm, in case our house is still not safe enough.
The first thing to take into account when we start building a new house, is **WHERE** to build it. It is very important to choose a safe location for our house. This decision will reduce our exposure to hazard.

We have to keep our house at a safe distance from the water bodies. If we build too close to rivers, heavy rains caused by tropical storms will cause floods that may affect our house.

If we build close to the sea, storm surges and heavy waves will destroy our house.

Trees can protect our house from the wind, by slowing down its speed, but be careful, we cannot build our house too close to trees because they could fall on our house and destroy it.

If we build our house on a slope, we have to be aware of landslide risk as our house can be pushed down the hill. Also, if we place our house too close to a hillside, a landslide can destroy and bury our house.

If the house is located at the top of the hill it is much more exposed to winds.

If the soil on our land is composed of filling material, we should avoid placing the foundation of the house on the filled area as this kind of soil is not yet compact enough to support the structure and it could slide down.
We need to make sure that our house foundations are **STRONGER THAN THE WIND**. Our foundations must be very heavy so that the wind will not blow our house down.

If we have no foundations, or they are weak, or they are not properly anchored to the walls, they will not prevent our house from being overturned or from sliding.

We should make sure our foundations are the right size to resist lift wind force. If our foundations are heavy and well connected to walls, even strong wind will not overturn our house.

How to build a strong foundation

The base plate is bolted to the foundation every 32 inches with washer and nut to fasten the wooden structure onto the foundation.

The blocks will be filled with concrete after they are up.

BRC fabric mesh. Do not forget to overlap at the end with at least 2 squares.

Ground slab:

- 4 inches of well compacted concrete above at least one foot of compacted soil.

Concrete mix ratio:

- 1 cement
- 2 sand
- 3 gravel

18 inches

3 rows of blocks

2 feet

1 foot

Be aware of floods!

Usually hurricanes produce floods. Therefore, we should build our house on top of a platform higher than the level of previous floods.
We need to ensure that our walls are **RIGID AND STRONG**. If our walls are made by light materials they must be braced in order to avoid racking.

Non rigid walls made of timber are not strong enough to resist the wind and will be pushed over.

Walls can become rigid by adding braces. We need to ensure that diagonals are stronger than the wind to avoid collapsing.

Walls with strong braces that are properly anchored to foundations will make our house safer.

Brace it all!

- Brace every wall.
- Brace below the roof.
- Brace between roof trusses.

Bracing is essential to ensure the stability of the structure. Brace at 45°. No less than 30° or more than 60°.

- No brace or a small brace is weak.
- Tie thick galvanized steel wire or use rebars.
- Nail timber or galvanized steel straps.

The strongest brace is created by nailing timber and galvanized steel straps.
Hurricane Resilient Housing - Habitat for Humanity

How to brace walls with openings

We reinforce unions with toenail connections or hurricane straps.

Hurricane straps that go under the base plate are the strongest. We use gusset plates for bigger joints while bracing.

We should close our doors and windows using shutters and reinforce with wood or even metal, in order to resist wind pressure. If we cannot ensure that every door and window is protected, a smart strategy is to allow the wind to flow freely by keeping doors and windows open.

When wind enters our house through an opening, and cannot find a way out, it increases pressure on the roof.

Opening opposite windows and doors will allow the wind to pass through and reduce the pressure inside our house.

If there are no rebarss to connect the baseplate to the foundation, we can use hurricane straps.

If there are rebarss, we use washer and nut to tie baseplate to the foundation every 32 inches.
The shape of our roof is critical for its resistance because of **aerodynamics**.

15° to 45°

- **15°** (too flat)
- **45°** (too steep)
- **30°** (strong)

Flatter roofs are more likely to be blown off by the wind.

The pitched roof is the weakest shape and therefore is not recommended. The gable roof is a little better but the strongest one is the hipped roof because it is the most aerodynamic.

If the eave is too long it is easier for the wind to lift the roof of our house.

If the eave is short it will be more difficult for the wind to lift our roof.

Keep eaves short to prevent the roof from being blown off and long enough to protect the walls from rain.

We should not extend the main roof of our house to cover a veranda or car port, because if wind blows this roof off it will also blow the main roof off.

Verandas and car ports should have a separate roof so the wind will lift this roof only, and our main roof will not be affected.
If our roof is not properly reinforced and does not have strong unions, even weak wind can lift it off.

If our roof has a small reinforcement, it will not resist strong winds and it will be lifted off as well.

If our roof structure is composed of trusses with good reinforcements and strong unions, even cyclone winds will not destroy the roof or the house.

Reinforcing the wooden roof structure

We have to ensure that the joints of our trusses are strong, therefore, we make these connections with steel.

How to build a strong roof

- **Zinc sheets.** Use 26 gauge (28 or 30 gauge is too thin)
- **1"x4" lath.** Join to rafters through hurricane strap
- **45cm/1.5 feet maximum**
- **Double wall plate.** Hurricane strap
- **Wood wall**

1"x6" treated lumber for protection

1 foot from the edge

2 feet apart for the rest of the roof

Rafters, join to wall plate through a hurricane strap

The Hurricane Strap

is the best way to make strong joints. There are many different kinds depending on the type of joint, but it is very important to always use them.

We can make our joints stronger

- Tie with rope, nylon or thick galvanized wire
- Tie with rebar and nails
- Tie with timber cleats
- Tie with hurricane straps
Reinforcing the edges of our roof with more nails will make it more difficult for the wind to lift.

Control the spacing of our laths

We have to give our laths less space on the edge in order to reinforce our roof.

Fold your nails

If we do not fold the nails it is easier for the wind to blow our roof away.

If we fold the nails we have more resistance against the wind, therefore, a more secure roof.

Overlap your sheets.

If we put the nail in the lowest or middle part of the corrugation, water is more likely to get inside the house.

We have to nail the highest part of the corrugation to protect our house from heavy rains.

overlapping 1 corrugation is not enough

overlapping at least 2 corrugations

Be aware of the rain and overlap your sheets.
Every element of our house must be linked to the others as a **chain**, so if the wind comes, all the pieces of the house will resist together.

This connection has to be tied with washer and nut. It is made out of steel rebar. **Page 11**

This connection is made out of a hurricane strap and bolts. We have to put a double base plate. **Page 14**

This connection is made of a twisted hurricane strap and bolts. We have to connect every rafter. **Page 19**

This connection is made with a hurricane strap and bolts. We have to be aware of the spacing between laths. **Page 19**

This connection is made of a twisted umbrella head nail and washer. We have to fold the nail. **Page 21**

Building chain

- foundations
- blocks
- base plate
- walls
- laths
- rafters
- wallplate
- zinc sheets

Strong joints

Foundations

Base plate

Walls

Wallplate

Rafters

Laths

Zinc sheets
When our house needs repairs, it is important to go little by little, and **repair the most important parts first**. If not, we may invest in repairs that do not help us in the event of a disaster.

If we start investing by improving only the roof, but our house does not have good foundations or they are not well connected to the walls, even if the roof is good, if a hurricane strikes, the entire house will be lifted and after the hurricane we will have **nowhere to live**. We will have to rebuild our entire house.

In this case we have decided to invest first in retrofitting **walls** and connecting them to our strong foundations.

Our roof is not good enough to resist the wind during the hurricane so it blows away.

After the emergency we can buy a tarpaulin which is cheap and good enough to cover ourselves for a while.

Later on, we will have resources to rebuild a new permanent and resilient roof.

Order of priorities when investing

1. **Foundations**
 - The first thing to invest in are strong and heavy foundations that will keep our house in place during a hurricane. We can put more weight on the foundations to make it stronger.

2. **Tie your walls**
 - Once we have strong foundations, we have to make sure your walls are strong and tieded down.

3. **Brace your walls**
 - It is important to build strong walls or reinforce them in order to have a more stable house. Without bracing, our walls are too weak to withstand a hurricane, we have to make sure we brace them.

4. **Tie your roof**
 - Remember we have to tie our roof down to our strong walls with hurricane straps, to keep it safe during the hurricane.

5. **Safer roof**
 - It is important to reinforce our roof with strong connections, to make it strong and heavy to resist the wind force.
Once we are informed that a hurricane is coming, and especially if we think our house is not resistant enough, we can follow some tips that will *protect our house* and *ourselves* in a short amount of time.

1. **Tie your house down**
 - We need to tie our house down with ropes anchored to the ground.

2. **Cut big branches**
 - If there is any tree close to our house that could damage it, we will cut the branches in order to prevent the tree from being pulled down onto the house by the wind.

3. **Safe important documents**
 - If we have any important things e.g. documents, it is better to put them in a plastic bag to protect them from floods.

4. **Put important things high above ground**
 - Before the emergency we must put our important things in a safe place. High above the ground is usually safer from floods.

5. **Open doors and windows**
 - When wind enters our house through an opening, and cannot find a way out, it increases pressure on the roof.
 - During the storm, we should open windows and doors to allow the wind to pass through and reduce pressure inside our house.

6. **Evacuate**
 - If we feel our house is not safe enough, we should evacuate to a safer location.

IFRC Shelter Kit Training package. International Federation of Red Cross and Red Crescent Societies (IFRC), 2011.

Make the right connections. A manual on Safe Construction Technique. CRDC and SSI - OAS/USAID Caribbean Disaster Mitigation Project (CDMP).

Hurricanes: How to build a safer wooden house. Jamaican Red Cross and French Red Cross. Jamaica, 2008 https://www.youtube.com/watch?v=vp7FxW0Ze6Y
we build strength, stability and self-reliance through shelter